Skip to main content

Problem Solving with Robots in Computing

Scott Turner and Gary Hill from the Division of Computing of the University of Northampton UK,have been investigating teaching and developing problem solving skills as a first step developing programming skills through the use of LEGO-based robots and graphics based programming.


Work on problem-solving has been on-going in the School of Science and Technology (was School of Applied Sciences) for the last four years looking at the concept of teaching and developing problem-solving first, then programming. The main vehicle for developing the problem-solving skills has been LEGO Mindstorms robotics kits and series of gradually more challenging robot-based tasks.






Lawhead et al (2003) stated that robots “…provide entry level programming students with a physical model to visually demonstrate concepts” and “the most important benefit of using robots in teaching introductory courses is the focus provided on learning language independent, persistent truths about programming and programming techniques. Robots readily illustrate the idea of computation as interaction”. Synergies can be made with our work and those one on pre-object programming and simulation of robots for teaching programming as a visual approach to the teaching of the widely used programming language  Java.

The main benefits that the students stated of this approach was they  believe robots provide a method to visually and physically see the outcome of a problem. The approach taken the module has been visually-orientated. The appropriateness of this seems to be borne out by the student comments. Student satisfaction  for a module based around this approach is over 92%. One of the comments made was that the linking of the problem-solving robot task and the programming assignment was liked. This feedback is similar to that reported by other authors when teaching programming using robots (Williams et al, 2003).  There is enough scope in this approach to have different levels of complexity/functionality within an assignment task offering a basic ‘pass’ level for a particular task, but also the scope for those students that desire more of a challenge.


Reference
Lawhead PB, Bland CG, Barnes DJ, Duncan ME, Goldweber M, Hollingsworth RG,
Schep M (2003), A Road Map for Teaching Introductory Programming Using
LEGO Mindstorms Robots SIGCSE Bulletin, 35(2): 191-201.
Williams AB (2003) The Qualitative Impact of Using LEGO MINDSTORMS Robot
to Teach Computer Engineering IEEE Trans. EducVol. 46 pp 206.


Publications

  • Turner S and Hill G (2010) "Innovative use of Robots and Graphical Programming in Software Education" Computer Education Ser. 117 No. 9 pp 54-57 ISSN: 1672-5913
  • Turner S, Hill G, Adams J (2009) "Robots in problem solving in programming" 9th 1-day Teaching of Programming Workshop, University of Bath, 6th April 2009.  
  • Turner S and Hill G(2008) "Robots within the Teaching of Problem-Solving" ITALICS vol. 7 No. 1 June 2008 pp 108-119 ISSN 1473-7507 
  • Turner S and Adams J (2008) "Robots and Problem Solving" 9th Higher Education Academy-ICS Annual Conference, Liverpool Hope University, 26th August - 28th August 2008. pp. 14 ISBN 978-0-9559676-0-3. 
  • Adams, J. and Turner, S., (2008) Problem Solving and Creativity for Undergraduate Computing and Engineering students: the use of robots as a development tool Creating Contemporary Student Learning Environments 2008, Northampton, UK. 
  • Adams, J. and Turner, S., (2008) Problem Solving and Creativity for Undergraduate Engineers: process or product? International Conference on Innovation, Good Practice and Research in Engineering Education 2008, Loughborough, UK. 
  • Adams, J., Turner, S., Kaczmarczyk, S., Picton, P. and Demian, P.,(2008). Problem Solving and Creativity for Undergraduate Engineers: findings of an action research project involving robots International Conference on Engineering Education ICEE 2008, Budapest, Hungary. 
  • Turner S and Hill G(2007) Robots in Problem-Solving and Programming 8th Annual Conference of the Subject Centre for Information and Computer Sciences, University of Southampton, 28th - 30th August 2007, pp 82-85 ISBN 0-978-0-9552005-7-1 
  • Turner S (2007) Developing problem-solving teaching material based upon Microsoft Robotics Studio. 8th Annual Conference of the Subject Centre for Information and Computer Sciences, University of Southampton, 28th - 30th August 2007 pp 151 ISBN 0-978-0-9552005-7-1 
  • Turner S (2007) Developing problem-solving teaching materials based upon Microsoft Robotics Studio. Innovative Teaching Development Fund Dissemination Day 1st March 2007 Microsoft:London 
  • Turner S and Hill G (2006) The Inclusion Of Robots Within The Teaching Of Problemsolving: Preliminary Results Proceedings of 7th Annual Conference of the ICS HE Academy Trinity College, Dublin, 29th - 31st August 2006 Proceedings pg 241-242 ISBN 0-9552005-3-9 

Comments

Popular posts from this blog

Problem-solving or computational Thinking

Confession time, this has been a research interest for me, along with a number of colleagues, since around 2005. It started with undergraduate students - investigating teaching and developing problem solving skills as a first step in developing programming skills through the use of LEGO-based robots and graphics based programming for undergraduate students. The main vehicle then for developing the problem-solving skills was the LEGO RCX Mindstorms robotics kits and series of gradually more challenging robot-based tasks. Lawhead et al (2003) stated that robots “…provide entry level programming students with a physical model to visually demonstrate concepts” and “the most important benefit of using robots in teaching introductory courses is the focus provided on learning language independent, persistent truths about programming and programming techniques. Robots readily illustrate the idea of computation as interaction”. Synergies can be made with our work and those one on pre-

Free Computing Resource: Junkbots and Scratch 1

The Junkbots project has been running for a number of years as an initiative to bring sustainability, computing and engineering together by building bots out of junk  details of the project can be found at.   https://junkbots.blogspot.com/ .  Junkbot is an extension of the Research into teaching problem-solving going on at the University of Northampton please feel to visit  https://computingnorthampton.blogspot.com/2019/01/problem-solving-research-outputs-and.html  for more details. One of the criticism of the robot programming part of the  Junkbots project  is not everyone necessarily gets a go at the programming. To address this a new feature has been added to the project, using Scratch to play with the ideas. This is the first of a set exercises to play with these ideas. The cleaning robot shown is loosely based on the LEGO Mindstorms RCX. The commands all in the My Blocks section Exercise 1: Moving the Robot Cleaner around.: Now go to  https://scratch.mit.edu/projec

10 most view post on the problem-solving blog - April 2020

Building an artificial neuron in Scratch Build yourself a Crumble Eggbot from junk Full details at http://bit.ly/2yZ3dZT There was three inspirations for this project ·Eggbot - http://www.instructables.com/id/Plastic-Egg-Bot/?utm_content=buffer9b065&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer  ·Femi Owolade supported by Nic Hughes ran a session at Mozilla Festival 2016 using the Crumble’s to make a wheeled robot. ·The junkbot project https://junkbots.blogspot.co.uk/  Kit ·Kinder Egg (without the Chocolate and toy) · Crumble   also available at  https://redfernelectronics.co.uk/crumble/  · 4x Crocodile clips and leads  · Battery pack  and 3xAA · Vibrating motor  ·Tape (lots of) Free Computing Resource: Junkbots and Scratch 1 The Junkbots project has been running for a number of years as an initiative to bring sustainability, computing and engineering together by building bots out of junk  details of the project can be found